Artan Operatör Konveks Fonksiyon ?çin Berezin Say? E?itsizli?i
نویسندگان
چکیده
Normalle?tirilmi? $K_{\lambda}:=\frac{k_{\lambda}}{\left\Vert k_{\lambda}\right\Vert_{\mathcal{H}}}$, üretici çekirdekli $\mathcal{H}\left( \Omega\right) $, Hilbert uzay? üzerinde $A$ s?n?rl? lineer operatör için Berezin sembolü ve say?s? s?ras?yla $A\left( \lambda\right) :=\left\langle AK_{\lambda},K_{\lambda}\right\rangle _{\mathcal{H}}$ $\mathrm{ber}(A):=\sup_{\lambda\in\Omega}\left\vert A{(\lambda)}\right\vert $ biçiminde tan?mlan?r. Bu karakteristik aras?ndaki durumlardan $\mathrm{ber}\left( A\right) \leq\frac{1}{\sqrt{2}}\mathrm{ber}\left(\left\vert A\right\vert +i\left\vert A^{\ast}\right\vert \right) e?itsizli?i elde edilmi?tir. çal??mam?zda ise onlar di?er e?itsizlikler ispatlanm?? say? e?itsizlikleri konveks fonksiyonlar?n?n baz? uygulamalar? verilmi?tir.
منابع مشابه
On the Berezin - Toeplitz
I consider the problem of composing Berezin-Toeplitz operators on the Hilbert space of Gaussian square-integrable entire functions on complex n-space, C n. For several interesting algebras of functions on C n , we have T'T = T ' for all '; in the algebra, where T' is the Berezin-Toeplitz operator associated with ' and ' is a \twisted" associative product on the algebra of functions. On the othe...
متن کاملSergey Berezin
My primary research interests are in the field of formal methods in computer-aided verification (or Formal Verification for short). This is a relatively young field in computer science which concerns with finding errors in hardware and computer programs, and proving correctness of such designs (absence of certain types of errors). Formal verification is often used in proving correctness of the ...
متن کامل1 Introduction Berezin-Töplitz Quantization
The general idea of quantization is to find a way to pass from the classical setting to the quantum one. In the classical situation, we have a symplectic manifold (M,ω) standing for the space of “states” of some physical system. The topological data of the manifold is contained in the structure of the function algebra C(M). The smooth structure on M gives rise to a distinguished subalgebra C∞ 0...
متن کاملBerezin Quantization of the Schrödinger Algebra
We examine the Schrödinger algebra in the framework of Berezin quantization. First, the Heisenberg-Weyl and sl(2) algebras are studied. Then the Berezin representation of the Schrödinger algebra is computed. In fact, the sl(2) piece of the Schrödinger algebra can be decoupled from the Heisenberg component. This is accomplished using a special realization of the sl(2) component that is built fro...
متن کاملBerezin Transforms on Pluriharmonic Bergman Spaces
We show that, perhaps surprisingly, in several aspects the behaviour of the reproducing kernels, of Toeplitz operators and of the Berezin transform on some weighted pluriharmonic Bergman spaces is the same as in the holomorphic case.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Düzce Üniversitesi bilim ve teknoloji dergisi
سال: 2021
ISSN: ['2148-2446']
DOI: https://doi.org/10.29130/dubited.1013082